Oracle a récemment dévoilé à l'OpenWorld 2015 son nouveau processeur SPARC M7. Il s'agit du 6ème que l'entreprise a sorti depuis le rachat de Sun Microsystem en 2010. Avec le SPARC M7, Oracle a repoussé les limite des capacités des systèmes SPARC.
Oracle Solaris 11 dispose d'un puissant système de mise à jour basé sur IPS et sur ZFS. Quand on met à jour le système d'exploitation un nouvel environnement est créé contenant le système mis à jour. Ce fonctionnement a pour avantage de ne pas avoir d'impact sur l'environnement actuellement actif puisqu'on ne le modifie pas directement.
Il y a peu de livres traitant de Solaris et aujourd'hui d'Oracle Solaris. De plus le système d'exploitation a énormément évolué depuis ces dernières années.
Déployer des agents Enterprise Manger sur Solaris n'est pas une tache difficile, et est similaire au déploiement sur les environnements Linux avec juste quelques changements mineurs.
Avec l'arrivée de la nouvelle mouture d'Oracle Solaris, Oracle a décidé de vous présenter les nouveaux challenges auquel répond Oracle Solaris 11.3 orienté sur 3 valeurs : La sécurité, la vitesse et la simplicité.
Savez-vous combien il y a de types de CPU SPARC actuellement sur le marché ? Pas un, pas deux, mais cinq. Le SPARC64-VII, le T3, le T4, T5, M5 et M10.
Benchmark entre Oracle et IBM en terme de coût global
Retrouver le compte rendu vidéo du TechDay Solaris/SPARC qui s'est déroulé le 15 mai à PARIS.
Oracle-Solaris.fr était présent à cette événement d'envergure pour les technologies Oracle Solaris et Sparc. L'objectif premier était d'y faire des rencontres, entre administrateur et ingénieur système Solaris mais aussi d'y partager ces expériences.
ifconfig est une commande très utilisé dans les systèmes Linux car il est l’équivalent du ipconfig de windows. Elle permet d’obtenir des informations sur les interfaces réseaux de la machine et surtout elle permet de configurer et gérer les interfaces réseaux. Sur Solaris elle est un peu particulière car elle ne fonctionne pas tout à fait comme sur un Linux. Comme on le verra dans l’exemple son fonctionnement est légèrement différent.
C’est donc une commande indispensable qu’il est nécessaire de maitriser. Il faut être root pour utiliser ces options avancées. Avec l’arrivée en fin d’année de Solaris 11 la commande ifconfig sera remplacé par ipadm
Le man étant plutôt long je vous encourage à utiliser la fonction de recherche de votre navigateur.
root@solaris:~# ifconfig -a lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 e1000g0: flags=1004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4> mtu 1500 index 2 inet 192.168.1.20 netmask ffffff00 broadcast 192.168.1.255 ether 8:0:27:f7:e3:54 lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252 index 1 inet6 ::1/128 e1000g0: flags=20002004841<UP,RUNNING,MULTICAST,DHCP,IPv6> mtu 1500 index 2 inet6 fe80::a00:27ff:fef7:e354/10 ether 8:0:27:f7:e3:54 root@solaris:~# ifconfig e1000g0 up root@solaris:~# ifconfig e1000g0 addif 192.168.1.21/24 Created new logical interface e1000g0:1 root@solaris:~# ifconfig -a lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 e1000g0: flags=1004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4> mtu 1500 index 2 inet 192.168.1.20 netmask ffffff00 broadcast 192.168.1.255 ether 8:0:27:f7:e3:54 e1000g0:1: flags=1000842<BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 inet 192.168.1.21 netmask ffffff00 broadcast 192.168.1.255 lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252 index 1 inet6 ::1/128 e1000g0: flags=20002004841<UP,RUNNING,MULTICAST,DHCP,IPv6> mtu 1500 index 2 inet6 fe80::a00:27ff:fef7:e354/10 ether 8:0:27:f7:e3:54
System Administration Commands ifconfig(1M) NAME ifconfig - configure network interface parameters SYNOPSIS ifconfig interface [address_family] [address [/prefix_length] [dest_address]] [addif address [/prefix_length]] [removeif address [/prefix_length]] [arp | -arp] [auth_algs authentication algorithm] [encr_algs encryption algorithm] [encr_auth_algs authentication algorithm] [auto-revarp] [broadcast address] [deprecated | -deprecated] [preferred | -preferred] [destination dest_address] [ether [address]] [failover | -failover] [group [name | ""]] [index if_index] [ipmp] [metric n] [modlist] [modinsert mod_name@pos] [modremove mod_name@pos] [mtu n] [netmask mask] [plumb] [unplumb] [private | -private] [nud | -nud] [set [address] [/netmask]] [standby | -standby] [subnet subnet_address] [tdst tunnel_dest_address] [token address/prefix_length] [tsrc tunnel_src_address] [trailers | -trailers] [up] [down] [usesrc [name | none]] [xmit | -xmit] [encaplimit n | -encaplimit] [thoplimit n] [router | -router] [zone zonename | -zone | -all-zones] ifconfig [address_family] interface {auto-dhcp | dhcp} [primary] [wait seconds] drop | extend | inform | ping | release | start | status DESCRIPTION The command ifconfig is used to assign an address to a net- work interface and to configure network interface parame- ters. The ifconfig command must be used at boot time to define the network address of each interface present on a machine; it may also be used at a later time to redefine an interface's address or other operating parameters. If no option is specified, ifconfig displays the current confi- guration for a network interface. If an address family is specified, ifconfig reports only the details specific to that address family. Only privileged users may modify the configuration of a network interface. Options appearing within braces ({}) indicate that one of the options must be specified. DHCP Configuration The forms of ifconfig that use the auto-dhcp or dhcp argu- ments are used to control the Dynamic Host Configuration Protocol ("DHCP") configuration of the interface. In this mode, ifconfig is used to control operation of dhcpagent(1M), the DHCP client daemon. Once an interface is placed under DHCP control by using the start operand, ifcon- fig should not, in normal operation, be used to modify the SunOS 5.11 Last change: 6 Jul 2010 1 System Administration Commands ifconfig(1M) address or characteristics of the interface. If the address of an interface under DHCP is changed, dhcpagent will remove the interface from its control. OPTIONS The following options are supported: addif address Create the next unused logical interface on the speci- fied physical interface. all-zones Make the interface available to every shared-IP zone on the system. The appropriate zone to which to deliver data is determined using the tnzonecfg database. This option is available only if the system is configured with the Solaris Trusted Extensions feature. The tnzonecfg database is described in the tnzonecfg(4) man page, which is part of the Solaris Trusted Exten- sions Reference Manual. anycast Marks the logical interface as an anycast address by setting the ANYCAST flag. See "INTERFACE FLAGS," below, for more information on anycast. -anycast Marks the logical interface as not an anycast address by clearing the ANYCAST flag. arp Enable the use of the Address Resolution Protocol ("ARP") in mapping between network level addresses and link level addresses (default). This is currently imple- mented for mapping between IPv4 addresses and MAC addresses. -arp Disable the use of the ARP on a physical interface. ARP cannot be disabled on an IPMP IP interface. SunOS 5.11 Last change: 6 Jul 2010 2 System Administration Commands ifconfig(1M) auth_algs authentication algorithm For a tunnel, enable IPsec AH with the authentication algorithm specified. The algorithm can be either a number or an algorithm name, including any to express no preference in algorithm. All IPsec tunnel properties must be specified on the same command line. To disable tunnel security, specify an auth_alg of none. It is now preferable to use the ipsecconf(1M) command when configuring a tunnel's security properties. If ipsecconf was used to set a tunnel's security proper- ties, this keyword will not affect the tunnel. auto-dhcp Use DHCP to automatically acquire an address for this interface. This option has a completely equivalent alias called dhcp. For IPv6, the interface specified must be the zeroth logical interface (the physical interface name), which has the link-local address. primary Defines the interface as the primary. The interface is defined as the preferred one for the delivery of client-wide configuration data. Only one interface can be the primary at any given time. If another interface is subsequently selected as the primary, it replaces the previous one. Nominating an inter- face as the primary one will not have much signifi- cance once the client work station has booted, as many applications will already have started and been configured with data read from the previous primary interface. wait seconds The ifconfig command will wait until the operation either completes or for the interval specified, whichever is the sooner. If no wait interval is given, and the operation is one that cannot complete immediately, ifconfig will wait 30 seconds for the requested operation to complete. The symbolic value forever may be used as well, with obvious meaning. SunOS 5.11 Last change: 6 Jul 2010 3 System Administration Commands ifconfig(1M) drop Remove the specified interface from DHCP control without notifying the DHCP server, and record the current lease for later use. Additionally, for IPv4, set the IP address to zero. For IPv6, unplumb all logical interfaces plumbed by dhcpagent. extend Attempt to extend the lease on the interface's IP address. This is not required, as the agent will automatically extend the lease well before it expires. inform Obtain network configuration parameters from DHCP without obtaining a lease on IP addresses. This is useful in situations where an IP address is obtained through mechanisms other than DHCP. ping Check whether the interface given is under DHCP con- trol, which means that the interface is managed by the DHCP agent and is working properly. An exit status of 0 means success. release Relinquish the IP addresses on the interface by notifying the server and discard the current lease. For IPv4, set the IP address to zero. For IPv6, all logical interfaces plumbed by dhcpagent are unplumbed. start Start DHCP on the interface. status Display the DHCP configuration status of the inter- face. SunOS 5.11 Last change: 6 Jul 2010 4 System Administration Commands ifconfig(1M) auto-revarp Use the Reverse Address Resolution Protocol (RARP) to automatically acquire an address for this interface. This will fail if the interface does not support RARP; for example, IPoIB (IP over InfiniBand), and on IPv6 interfaces. broadcast address For IPv4 only. Specify the address to use to represent broadcasts to the network. The default broadcast address is the address with a host part of all 1's. A "+" (plus sign) given for the broadcast value causes the broadcast address to be reset to a default appropriate for the (possibly new) address and netmask. The arguments of ifconfig are interpreted left to right. Therefore example% ifconfig -a netmask + broadcast + and example% ifconfig -a broadcast + netmask + may result in different values being assigned for the broadcast addresses of the interfaces. deprecated Marks the logical interface as deprecated. An address associated with a deprecated interface will not be used as source address for outbound packets unless either there are no other addresses available on the interface or the application has bound to this address explicitly. The status display shows DEPRECATED as part of flags. See for information on the flags supported by ifconfig. -deprecated Marks a logical interface as not deprecated. An address associated with such an interface could be used as a source address for outbound packets. preferred Marks the logical interface as preferred. This option is SunOS 5.11 Last change: 6 Jul 2010 5 System Administration Commands ifconfig(1M) only valid for IPv6 addresses. Addresses assigned to preferred logical interfaces are preferred as source addresses over all other addresses configured on the system, unless the address is of an inappropriate scope relative to the destination address. Preferred addresses are used as source addresses regardless of which physi- cal interface they are assigned to. For example, you can configure a preferred source address on the loopback interface and advertise reachability of this address by using a routing protocol. -preferred Marks the logical interface as not preferred. destination dest_address Set the destination address for a point-to point inter- face. dhcp This option is an alias for option auto-dhcp down Mark a logical interface as "down". (That is, turn off the IFF_UP bit.) When a logical interface is marked "down," the system does not attempt to use the address assigned to that interface as a source address for out- bound packets and will not recognize inbound packets destined to that address as being addressed to this host. Additionally, when all logical interfaces on a given physical interface are "down," the physical inter- face itself is disabled. When a logical interface is down, all routes that specify that interface as the output (using the -ifp option in the route(1M) command or RTA_IFP in a route(7P) socket) are removed from the forwarding table. Routes marked with RTF_STATIC are returned to the table if the interface is brought back up, while routes not marked with RTF_STATIC are simply deleted. When all logical interfaces that could possibly be used to reach a particular gateway address are brought down (specified without the interface option as in the previ- ous paragraph), the affected gateway routes are treated SunOS 5.11 Last change: 6 Jul 2010 6 System Administration Commands ifconfig(1M) as though they had the RTF_BLACKHOLE flag set. All matching packets are discarded because the gateway is unreachable. encaplimit n Set the tunnel encapsulation limit for the interface to n. This option applies to IPv4-in-IPv6 and IPv6-in-IPv6 tunnels only, and it simply modifies the encaplimit link property of the underlying IPv6 tunnel link (see dladm(1M)). The tunnel encapsulation limit controls how many more tunnels a packet can enter before it leaves any tunnel, that is, the tunnel nesting level. This option is obsolete, superseded by the dladm(1M) encaplimit link property. -encaplimit Disable generation of the tunnel encapsulation limit. This option applies only to IPv4-in-IPv6 and IPv6-in- IPv6 tunnels. This simply sets the encaplimit link pro- perty of the underlying IPv6 tunnel link to 0 (see dladm(1M) encaplimit). This option is obsolete, superseded by the dladm(1M) encaplimit link property. encr_auth_algs authentication algorithm For a tunnel, enable IPsec ESP with the authentication algorithm specified. It can be either a number or an algorithm name, including any or none, to indicate no algorithm preference. If an ESP encryption algorithm is specified but the authentication algorithm is not, the default value for the ESP authentication algorithm will be any. It is now preferable to use the ipsecconf(1M) command when configuring a tunnel's security properties. If ipsecconf was used to set a tunnel's security proper- ties, this keyword will not affect the tunnel. encr_algs encryption algorithm For a tunnel, enable IPsec ESP with the encryption algo- rithm specified. It can be either a number or an algo- rithm name. Note that all IPsec tunnel properties must SunOS 5.11 Last change: 6 Jul 2010 7 System Administration Commands ifconfig(1M) be specified on the same command line. To disable tunnel security, specify the value of encr_alg as none. If an ESP authentication algorithm is specified, but the encryption algorithm is not, the default value for the ESP encryption will be null. It is now preferable to use the ipsecconf(1M) command when configuring a tunnel's security properties. If ipsecconf was used to set a tunnel's security proper- ties, this keyword will not affect the tunnel. ether [ address ] If no address is given and the user is root or has suf- ficient privileges to open the underlying datalink, then display the current Ethernet address information. Otherwise, if the user is root or has sufficient privileges, set the Ethernet address of the interfaces to address. The address is an Ethernet address represented as x:x:x:x:x:x where x is a hexadecimal number between 0 and FF. Similarly, for the IPoIB (IP over InfiniBand) interfaces, the address will be 20 bytes of colon-separated hex numbers between 0 and FF. Some, though not all, Ethernet interface cards have their own addresses. To use cards that do not have their own addresses, refer to section 3.2.3(4) of the IEEE 802.3 specification for a definition of the locally administered address space. Note that all IP interfaces in an IPMP group must have unique hardware addresses; see in.mpathd(1M). -failover Set NOFAILOVER on the logical interface. This makes the associated address available for use by in.mpathd to perform probe-based failure detection for the associated physical IP interface. As a side effect, DEPRECATED will also be set on the logical interface. This operation is not permitted on an IPMP IP interface. failover Clear NOFAILOVER on the logical interface. This is the default. These logical interfaces are subject to migra- tion when brought up (see IP MULTIPATHING GROUPS). SunOS 5.11 Last change: 6 Jul 2010 8 System Administration Commands ifconfig(1M) group [ name |""] When applied to a physical interface, it places the interface into the named group. If the group does not exist, it will be created, along with one or more IPMP IP interfaces (for IPv4, IPv6, or both). Any UP addresses that are not also marked NOFAILOVER are sub- ject to migration to the IPMP IP interface (see IP MUL- TIPATHING GROUPS). Specifying a group name of "" removes the physical IP interface from the group. When applied to a physical IPMP IP interface, it renames the IPMP group to have the new name. If the name already exists, or a name of "" is specified, it fails. Renaming IPMP groups is discouraged. Instead, the IPMP IP inter- face should be given a meaningful name when it is created by means of the ipmp subcommand, which the sys- tem will also use as the IPMP group name. index n Change the interface index for the interface. The value of n must be an interface index (if_index) that is not used on another interface. if_index will be a non-zero positive number that uniquely identifies the network interface on the system. ipmp Create an IPMP IP interface with the specified name. An interface must be separately created for use by IPv4 and IPv6. The address_family parameter controls whether the command applies to IPv4 or IPv6 (IPv4 if unspecified). All IPMP IP interfaces have the IPMP flag set. metric n Set the routing metric of the interface to n; if no value is specified, the default is 0. The routing metric is used by the routing protocol. Higher metrics have the effect of making a route less favorable. Metrics are counted as addition hops to the destination network or host. modinsert mod_name@pos Insert a module with name mod_name to the stream of the device at position pos. The position is relative to the SunOS 5.11 Last change: 6 Jul 2010 9 System Administration Commands ifconfig(1M) stream head. Position 0 means directly under stream head. Based upon the example in the modlist option, use the following command to insert a module with name ipqos under the ip module and above the firewall module: example% ifconfig eri0 modinsert ipqos@2 A subsequent listing of all the modules in the stream of the device follows: example% ifconfig eri0 modlist 0 arp 1 ip 2 ipqos 3 firewall 4 eri modlist List all the modules in the stream of the device. The following example lists all the modules in the stream of the device: example% ifconfig eri0 modlist 0 arp 1 ip 2 firewall 4 eri modremove mod_name@pos Remove a module with name mod_name from the stream of the device at position pos. The position is relative to the stream head. Based upon the example in the modinsert option, use the following command to remove the firewall module from the stream after inserting the ipqos module: example% ifconfig eri0 modremove firewall@3 SunOS 5.11 Last change: 6 Jul 2010 10 System Administration Commands ifconfig(1M) A subsequent listing of all the modules in the stream of the device follows: example% ifconfig eri0 modlist 0 arp 1 ip 2 ipqos 3 eri Note that the core IP stack modules, for example, ip and tun modules, cannot be removed. mtu n Set the maximum transmission unit of the interface to n. For many types of networks, the mtu has an upper limit, for example, 1500 for Ethernet. This option sets the FIXEDMTU flag on the affected interface. netmask mask For IPv4 only. Specify how much of the address to reserve for subdividing networks into subnetworks. The mask includes the network part of the local address and the subnet part, which is taken from the host field of the address. The mask contains 1's for the bit positions in the 32-bit address which are to be used for the net- work and subnet parts, and 0's for the host part. The mask should contain at least the standard network por- tion, and the subnet field should be contiguous with the network portion. The mask can be specified in one of four ways: 1. with a single hexadecimal number with a leading 0x, 2. with a dot-notation address, 3. with a "+" (plus sign) address, or 4. with a pseudo host name/pseudo network name found in the network database networks(4). If a "+" (plus sign) is given for the netmask value, the mask is looked up in the netmasks(4) database. This lookup finds the longest matching netmask in the data- base by starting with the interface's IPv4 address as the key and iteratively masking off more and more low order bits of the address. This iterative lookup ensures that the netmasks(4) database can be used to specify the SunOS 5.11 Last change: 6 Jul 2010 11 System Administration Commands ifconfig(1M) netmasks when variable length subnetmasks are used within a network number. If a pseudo host name/pseudo network name is supplied as the netmask value, netmask data may be located in the hosts or networks database. Names are looked up by first using gethostbyname(3NSL). If not found there, the names are looked up in getnetbyname(3SOCKET). These interfaces may in turn use nsswitch.conf(4) to determine what data store(s) to use to fetch the actual value. For both inet and inet6, the same information conveyed by mask can be specified as a prefix_length attached to the address parameter. nud Enables the neighbor unreachability detection mechanism on a point-to-point physical interface. -nud Disables the neighbor unreachability detection mechanism on a point-to-point physical interface. plumb For a physical IP interface, open the datalink associ- ated with the physical interface name and set up the plumbing needed for IP to use the datalink. When used with a logical interface name, this command is used to create a specific named logical interface on an existing physical IP interface. An interface must be separately plumbed for IPv4 and IPv6 according to the address_family parameter (IPv4 if unspecified). Before an interface has been plumbed, it will not be shown by ifconfig -a. Note that IPMP IP interfaces are not tied to a specific datalink and are instead created with the ipmp subcom- mand. private Tells the in.routed routing daemon that a specified log- ical interface should not be advertised. SunOS 5.11 Last change: 6 Jul 2010 12 System Administration Commands ifconfig(1M) -private Specify unadvertised interfaces. removeif address Remove the logical interface on the physical interface specified that matches the address specified. router Enable IP forwarding on the interface. When enabled, the interface is marked ROUTER, and IP packets can be for- warded to and from the interface. Enabling ROUTER on any IP interface in an IPMP group enables it on all IP interfaces in that IPMP group. -router Disable IP forwarding on the interface. IP packets are not forwarded to and from the interface. Disabling ROUTER on any IP interface in an IPMP group disables it on all IP interfaces in that IPMP group. set Set the address, prefix_length or both, for a logical interface. standby Mark the physical IP interface as a STANDBY interface. If an interface is marked STANDBY and is part of an IPMP group, the interface will not be used for data traffic unless another interface in the IPMP group becomes unus- able. When a STANDBY interface is functional but not being used for data traffic, it will also be marked INACTIVE. This operation is not permitted on an IPMP IP interface. -standby Clear STANDBY on the interface. This is the default. SunOS 5.11 Last change: 6 Jul 2010 13 System Administration Commands ifconfig(1M) subnet Set the subnet address for an interface. tdst tunnel_dest_address Set the destination address of a tunnel. The address should not be the same as the dest_address of the tun- nel, because no packets leave the system over such a tunnel. This option is obsolete, superseded by the dladm(1M) create-iptun and modify-iptun subcommands. thoplimit n Set the hop limit for a tunnel interface. The hop limit value is used as the TTL in the IPv4 header for the IPv6-in-IPv4 and IPv4-in-IPv4 tunnels. For IPv6-in-IPv6 and IPv4-in-IPv6 tunnels, the hop limit value is used as the hop limit in the IPv6 header. This option simply modifies the hoplimit link property of the underlying IP tunnel link (see dladm(1M)). This option is obsolete, superseded by the dladm(1M) hoplimit link property. token address/prefix_length Set the IPv6 token of an interface to be used for address autoconfiguration. example% ifconfig eri0 inet6 token ::1/64 trailers This flag previously caused a nonstandard encapsulation of IPv4 packets on certain link levels. Drivers supplied with this release no longer use this flag. It is pro- vided for compatibility, but is ignored. -trailers Disable the use of a "trailer" link level encapsulation. SunOS 5.11 Last change: 6 Jul 2010 14 System Administration Commands ifconfig(1M) tsrc tunnel_src_address Set the source address of a tunnel. This is the source address on an outer encapsulating IP header. It must be an address of another interface already configured using ifconfig. This option is obsolete, superseded by the dladm(1M) create-iptun and modify-iptun subcommands. unplumb For a physical or IPMP interface, remove all associated logical IP interfaces and tear down any plumbing needed for IP to use the interface. For an IPMP IP interface, this command will fail if the group is not empty. For a logical interface, the logical interface is removed. An interface must be separately unplumbed for IPv4 and IPv6 according to the address_family parameter (IPv4 if unspecified). Upon success, the interface name will no longer appear in the output of ifconfig -a. up Mark a logical interface UP. As a result, the IP module will accept packets destined to the associated address (unless the address is zero), along with any associated multicast and broadcast IP addresses. Similarly, the IP module will allow packets to be sent with the associated address as a source address. At least one logical inter- face must be UP for the associated physical interface to send or receive packets usesrc [ name | none ] Specify a physical interface to be used for source address selection. If the keyword none is used, then any previous selection is cleared. When an application does not choose a non-zero source address using bind(3SOCKET), the system will select an appropriate source address based on the outbound inter- face and the address selection rules (see ipaddrsel(1M)). When usesrc is specified and the specified interface is selected in the forwarding table for output, the system looks first to the specified physical interface and its SunOS 5.11 Last change: 6 Jul 2010 15 System Administration Commands ifconfig(1M) associated logical interfaces when selecting a source address. If no usable address is listed in the forward- ing table, the ordinary selection rules apply. For exam- ple, if you enter: # ifconfig eri0 usesrc vni0 ...and vni0 has address 10.0.0.1 assigned to it, the system will prefer 10.0.0.1 as the source address for any packets originated by local connections that are sent through eri0. Further examples are provided in the EXAMPLES section. While you can specify any physical interface (or even loopback), be aware that you can also specify the vir- tual IP interface (see vni(7D)). The virtual IP inter- face is not associated with any physical hardware and is thus immune to hardware failures. You can specify any number of physical interfaces to use the source address hosted on a single virtual interface. This simplifies the configuration of routing-based multipathing. If one of the physical interfaces were to fail, communication would continue through one of the remaining, functioning physical interfaces. This scenario assumes that the reachability of the address hosted on the virtual inter- face is advertised in some manner, for example, through a routing protocol. Because the ifconfig preferred option is applied to all interfaces, it is coarser-grained than the usesrc option. It will be overridden by usesrc and setsrc (route subcommand), in that order. xmit Enable a logical interface to transmit packets. This is the default behavior when the logical interface is up. -xmit Disable transmission of packets on an interface. The interface will continue to receive packets. zone zonename Place the logical interface in zone zonename. The named zone must be active in the kernel in the ready or run- ning state. The interface is unplumbed when the zone is SunOS 5.11 Last change: 6 Jul 2010 16 System Administration Commands ifconfig(1M) halted or rebooted. The zone must be configure to be an shared-IP zone. zonecfg(1M) is used to assign network interface names to exclusive-IP zones. -zone Place IP interface in the global zone. This is the default. OPERANDS The interface operand, as well as address parameters that affect it, are described below. interface A string of one of the following forms: o name physical-unit, for example, eri0 or ce1 o name physical-unit:logical-unit, for example, eri0:1 o ip.tunN, ip6.tunN, or ip6to4.tunN for implicit IP tunnel links If the interface name starts with a dash (-), it is interpreted as a set of options which specify a set of interfaces. In such a case, -a must be part of the options and any of the additional options below can be added in any order. If one of these interface names is given, the commands following it are applied to all of the interfaces that match. -a Apply the command to all interfaces of the specified address family. If no address family is supplied, either on the command line or by means of /etc/default/inet_type, then all address families will be selected. -d Apply the commands to all "down" interfaces in the system. -D Apply the commands to all interfaces not under DHCP SunOS 5.11 Last change: 6 Jul 2010 17 System Administration Commands ifconfig(1M) (Dynamic Host Configuration Protocol) control. -u Apply the commands to all "up" interfaces in the system. -Z Apply the commands to all interfaces in the user's zone. -4 Apply the commands to all IPv4 interfaces. -6 Apply the commands to all IPv6 interfaces. address_family The address family is specified by the address_family parameter. The ifconfig command currently supports the following families: inet and inet6. If no address family is specified, the default is inet. ifconfig honors the DEFAULT_IP setting in the /etc/default/inet_type file when it displays interface information . If DEFAULT_IP is set to IP_VERSION4, then ifconfig will omit information that relates to IPv6 interfaces. However, when you explicitly specify an address family (inet or inet6) on the ifconfig command line, the command line overrides the DEFAULT_IP set- tings. address For the IPv4 family (inet), the address is either a host name present in the host name data base (see hosts(4)) or in the Network Information Service (NIS) map hosts, or an IPv4 address expressed in the Internet standard "dot notation". For the IPv6 family (inet6), the address is either a SunOS 5.11 Last change: 6 Jul 2010 18 System Administration Commands ifconfig(1M) host name present in the host name data base (see hosts(4)) or in the Network Information Service (NIS) map ipnode, or an IPv6 address expressed in the Internet standard colon-separated hexadecimal format represented as x:x:x:x:x:x:x:x where x is a hexadecimal number between 0 and FFFF. prefix_length For the IPv4 and IPv6 families (inet and inet6), the prefix_length is a number between 0 and the number of bits in the address. For inet, the number of bits in the address is 32; for inet6, the number of bits in the address is 128. The prefix_length denotes the number of leading set bits in the netmask. dest_address If the dest_address parameter is supplied in addition to the address parameter, it specifies the address of the correspondent on the other end of a point-to-point link. tunnel_dest_address An address that is or will be reachable through an interface other than the tunnel being configured. This tells the tunnel where to send the tunneled packets. This address must not be the same as the interface des- tination address being configured. tunnel_src_address An address that is attached to an already configured interface that has been configured "up" with ifconfig. INTERFACE FLAGS The ifconfig command supports the following interface flags. The term "address" in this context refers to a logical interface, for example, eri0:0, while "interface" refers to the physical interface, for example, eri0. ADDRCONF The address is from stateless addrconf. The stateless mechanism allows a host to generate its own address using a combination of information advertised by routers and locally available information. Routers advertise SunOS 5.11 Last change: 6 Jul 2010 19 System Administration Commands ifconfig(1M) prefixes that identify the subnet associated with the link, while the host generates an "interface identifier" that uniquely identifies an interface in a subnet. In the absence of information from routers, a host can gen- erate link-local addresses. This flag is specific to IPv6. ANYCAST Indicates an anycast address. An anycast address identi- fies the nearest member of a group of systems that pro- vides a particular type of service. An anycast address is assigned to a group of systems. Packets are delivered to the nearest group member identified by the anycast address instead of being delivered to all members of the group. BROADCAST This broadcast address is valid. This flag and POINTTO- POINT are mutually exclusive CoS This interface supports some form of Class of Service (CoS) marking. An example is the 802.1D user priority marking supported on VLAN interfaces. For IPMP IP inter- faces, this will only be set if all interfaces in the group have CoS set. Note that this flag is only set on interfaces over VLAN links and over Ethernet links that have their dladm(1M) tagmode link property set to normal. DEPRECATED This address is deprecated. This address will not be used as a source address for outbound packets unless there are no other addresses on this interface or an application has explicitly bound to this address. An IPv6 deprecated address is part of the standard mechan- ism for renumbering in IPv6 and will eventually be deleted when not used. For both IPv4 and IPv6, DEPRE- CATED is also set on all NOFAILOVER addresses, though this may change in a future release. SunOS 5.11 Last change: 6 Jul 2010 20 System Administration Commands ifconfig(1M) DHCPRUNNING The logical interface's address is managed by dhcpagent(1M). For IPv6, this will also be set on the zeroth logical interface if DHCPv6 has been started on the interface; see in.ndpd(1M). DUPLICATE The logical interface has been disabled because the IP address configured on the interface is a duplicate. Some other node on the network is using this address. If the address was configured by DHCP or is temporary, the sys- tem will choose another automatically, if possible. Oth- erwise, the system will attempt to recover this address periodically and the interface will recover when the conflict has been removed from the network. Changing the address or netmask, or setting the logical interface to up will restart duplicate detection. Setting the inter- face to down terminates recovery and removes the DUPLI- CATE flag. FAILED The in.mpathd daemon has determined that the interface has failed. FAILED interfaces will not be used to send or receive IP data traffic. If this is set on a physical IP interface in an IPMP group, IP data traffic will con- tinue to flow over other usable IP interfaces in the IPMP group. If this is set on an IPMP IP interface, the entire group has failed and no data traffic can be sent or received over any interfaces in that group. FIXEDMTU The MTU has been set using the -mtu option. This flag is read-only. Interfaces that have this flag set have a fixed MTU value that is unaffected by dynamic MTU changes that can occur when drivers notify IP of link MTU changes. INACTIVE The physical interface is functioning but is not used to send or receive data traffic according to administrative policy. This flag is initially set by the standby sub- command and is subsequently controlled by in.mpathd. It also set when FAILBACK=no mode is enabled (see SunOS 5.11 Last change: 6 Jul 2010 21 System Administration Commands ifconfig(1M) in.mpathd(1M)) to indicate that the IP interface has repaired but is not being used. IPMP Indicates that this is an IPMP IP interface. LOOPBACK Indicates that this is the loopback interface. MULTI_BCAST Indicates that the broadcast address is used for multi- cast on this interface. MULTICAST The interface supports multicast. IP assumes that any interface that supports hardware broadcast, or that is a point-to-point link, will support multicast. NOARP There is no address resolution protocol (ARP) for this interface that corresponds to all interfaces for a dev- ice without a broadcast address. This flag is specific to IPv4. NOFAILOVER The address associated with this logical interface is available to in.mpathd for probe-based failure detection of the associated physical IP interface. NOLOCAL The interface has no address , just an on-link subnet. NONUD NUD is disabled on this interface. NUD (neighbor unreachability detection) is used by a node to track the reachability state of its neighbors, to which the node SunOS 5.11 Last change: 6 Jul 2010 22 System Administration Commands ifconfig(1M) actively sends packets, and to perform any recovery if a neighbor is detected to be unreachable. This flag is specific to IPv6. NORTEXCH The interface does not exchange routing information. For RIP-2, routing packets are not sent over this interface. Additionally, messages that appear to come over this interface receive no response. The subnet or address of this interface is not included in advertisements over other interfaces to other routers. NOXMIT Indicates that the address does not transmit packets. RIP-2 also does not advertise this address. OFFLINE The interface is offline and thus cannot send or receive IP data traffic. This is only set on IP interfaces in an IPMP group. See if_mpadm(1M) and cfgadm(1M). POINTOPOINT Indicates that the address is a point-to-point link. This flag and BROADCAST are mutually exclusive PREFERRED This address is a preferred IPv6 source address. This address will be used as a source address for IPv6 com- munication with all IPv6 destinations, unless another address on the system is of more appropriate scope. The DEPRECATED flag takes precedence over the PREFERRED flag. PRIVATE Indicates that this address is not advertised. For RIP- 2, this interface is used to send advertisements. How- ever, neither the subnet nor this address are included in advertisements to other routers. SunOS 5.11 Last change: 6 Jul 2010 23 System Administration Commands ifconfig(1M) PROMISC A read-only flag indicating that an interface is in promiscuous mode. All addresses associated with an interface in promiscuous mode will display (in response to ifconfig -a, for example) the PROMISC flag. ROUTER Indicates that IP packets can be forwarded to and from the interface. RUNNING Indicates that the required resources for an interface are allocated. For some interfaces this also indicates that the link is up. For IPMP IP interfaces, RUNNING is set as long as one IP interface in the group is active. STANDBY Indicates that this physical interface will not be used for data traffic unless another interface in the IPMP group becomes unusable. The INACTIVE and FAILED flags indicate whether it is actively being used. TEMPORARY Indicates that this is a temporary IPv6 address as defined in RFC 3041. UNNUMBERED This flag is set when the local IP address on the link matches the local address of some other link in the sys- tem UP Indicates that the logical interface (and the associated physical interface) is up. The IP module will accept packets destined to UP addresses (unless the address is zero), along with any associated multicast and broadcast IP addresses. Similarly, the IP module will allow pack- ets to be sent with an UP address as a source address. SunOS 5.11 Last change: 6 Jul 2010 24 System Administration Commands ifconfig(1M) VIRTUAL Indicates that the physical interface has no underlying hardware. It is not possible to transmit or receive packets through a virtual interface. These interfaces are useful for configuring local addresses that can be used on multiple interfaces. (See also the usesrc option.) L3PROTECT Indicates that Layer-3 protection has been enforced on the physical interface using the allowed-ips link pro- perty in dladm(1M). LOGICAL INTERFACES Solaris TCP/IP allows multiple logical interfaces to be associated with a physical network interface. This allows a single machine to be assigned multiple IP addresses, even though it may have only one network interface. Physical net- work interfaces have names of the form driver-name physical-unit-number, while logical interfaces have names of the form driver-name physical-unit-number:logical-unit- number. A physical interface is configured into the system using the plumb command. For example: example% ifconfig eri0 plumb Once a physical interface has been "plumbed", logical inter- faces associated with the physical interface can be config- ured by separate -plumb or -addif options to the ifconfig command. example% ifconfig eri0:1 plumb allocates a specific logical interface associated with the physical interface eri0. The command example% ifconfig eri0 addif 192.168.200.1/24 up SunOS 5.11 Last change: 6 Jul 2010 25 System Administration Commands ifconfig(1M) allocates the next available logical unit number on the eri0 physical interface and assigns an address and prefix_length. A logical interface can be configured with parameters ( address,prefix_length, and so on) different from the physi- cal interface with which it is associated. Logical inter- faces that are associated with the same physical interface can be given different parameters as well. Each logical interface must be associated with an existing and "up" phy- sical interface. So, for example, the logical interface eri0:1 can only be configured after the physical interface eri0 has been plumbed. To delete a logical interface, use the unplumb or removeif options. For example, example% ifconfig eri0:1 down unplumb will delete the logical interface eri0:1. IP MULTIPATHING GROUPS Physical interfaces that share the same link-layer broadcast domain must be collected into a single IP Multipathing (IPMP) group using the group subcommand. Each IPMP group has an associated IPMP IP interface, which can either be expli- citly created (the preferred method) by using the ipmp sub- command or implicitly created by ifconfig in response to placing an IP interface into a new IPMP group. Implicitly- created IPMP interfaces will be named ipmpN where N is the lowest integer that does not conflict with an existing IP interface name or IPMP group name. Each IPMP IP interface is created with a matching IPMP group name, though it can be changed using the group subcommand. Each IPMP IP interface hosts a set of highly-available IP addresses. These addresses will remain reachable so long as at least one interface in the group is active, where "active" is defined as having at least one UP address and having INACTIVE, FAILED, and OFFLINE clear. IP addresses hosted on the IPMP IP interface may either be configured statically or configured through DHCP by means of the dhcp subcommand. Interfaces assigned to the same IPMP group are treated as equivalent and monitored for failure by in.mpathd. Provided SunOS 5.11 Last change: 6 Jul 2010 26 System Administration Commands ifconfig(1M) that active interfaces in the group remain, IP interface failures (and any subsequent repairs) are handled tran- sparently to sockets-based applications. IPMP is also integrated with the Dynamic Reconfiguration framework (see cfgadm(1M)), which enables network adapters to be replaced in a way that is invisible to sockets-based applications. The IP module automatically load-spreads all outbound traffic across all active interfaces in an IPMP group. Simi- larly, all UP addresses hosted on the IPMP IP interface will be distributed across the active interfaces to promote inbound load-spreading. The ipmpstat(1M) utility allows many aspects of the IPMP subsystem to be observed, including the current binding of IP data addresses to IP interfaces. When an interface is placed into an IPMP group, any UP logi- cal interfaces are "migrated" to the IPMP IP interface for use by the group, unless: o the logical interface is marked NOFAILOVER; o the logical interface hosts an IPv6 link-local address; o the logical interface hosts an IPv4 0.0.0.0 address. Likewise, once an interface is in a group, if changes are made to a logical interface such that it is UP and not exempted by one of the conditions above, it will also migrate to the associated IPMP IP interface. Logical inter- faces never migrate back, even if the physical interface that contributed the address is removed from the group. Each interface placed into an IPMP group may be optionally configured with a "test" address that in.mpathd will use for probe-based failure detection; see in.mpathd(1M). These addresses must be marked NOFAILOVER (using the -failover subcommand) prior to being marked UP. Test addresses may also be acquired through DHCP by means of the dhcp subcom- mand. For more background on IPMP, please see the IPMP-related chapters of the System Administration Guide: Network Inter- faces and Network Virtualization. SunOS 5.11 Last change: 6 Jul 2010 27 System Administration Commands ifconfig(1M) CONFIGURING IPV6 INTERFACES When an IPv6 physical interface is plumbed and configured "up" with ifconfig, it is automatically assigned an IPv6 link-local address for which the last 64 bits are calculated from the MAC address of the interface. example% ifconfig eri0 inet6 plumb up The following example shows that the link-local address has a prefix of fe80::/10. example% ifconfig eri0 inet6 ce0: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2 inet6 fe80::a00:20ff:fe8e:f3ad/10 Link-local addresses are only used for communication on the local subnet and are not visible to other subnets. If an advertising IPv6 router exists on the link advertising prefixes, then the newly plumbed IPv6 interface will auto- configure logical interface(s) depending on the prefix advertisements. For example, for the prefix advertisement 2001:0db8:3c4d:0:55::/64, the autoconfigured interface will look like: eri0:2: flags=2080841<UP,RUNNING,MULTICAST,ADDRCONF,IPv6> mtu 1500 index 2 inet6 2001:0db8:3c4d:55:a00:20ff:fe8e:f3ad/64 Even if there are no prefix advertisements on the link, you can still assign global addresses manually, for example: example% ifconfig eri0 inet6 addif \ 2001:0db8:3c4d:55:a00:20ff:fe8e:f3ad/64 up To configure boot-time defaults for the interface eri0, place the following entry in the /etc/hostname6.eri0 file: SunOS 5.11 Last change: 6 Jul 2010 28 System Administration Commands ifconfig(1M) addif 2001:0db8:3c4d:55:a00:20ff:fe8e:f3ad/64 up Configuring IP-over-IP Tunnel Interfaces An IP tunnel is conceptually comprised of two parts: a vir- tual link between two or more IP nodes, and an IP interface above this link which allows the system to transmit and receive IP packets encapsulated by the underlying link. The dladm(1M) command is used to configure tunnel links, and ifconfig is used to configure IP interfaces over those tun- nel links. An IPv4-over-IPv4 tunnel is created by plumbing an IPv4 interface over an IPv4 tunnel link. An IPv6-over- IPv4 tunnel is created by plumbing an IPv6 interface over an IPv6 tunnel link, and so forth. When IPv6 interfaces are plumbed over IP tunnel links, their IPv6 addresses are automatically set. For IPv4 and IPv6 tun- nels, source and destination link-local addresses of the form fe80::interface-id are configured. For IPv4 tunnels, the interface-id is the IPv4 tunnel source or destination address. For IPv6 tunnels, the interface-id is the last 64 bits of the IPv6 tunnel source or destination address. For example, for an IPv4 tunnel between 10.1.2.3 and 10.4.5.6, the IPv6 link-local source and destination addresses of the IPv6 interface would be fe80::a01:203 and fe80::a04:506. For an IPv6 tunnel between 2000::1234:abcd and 3000::5678:abcd, the IPv6 link-local source and destination addresses of the interface would be fe80::1234:abcd and fe80::5678:abcd. These default link-local addresses can be overridden by specifying the addresses explicitly, as with any other point-to-point interface. For 6to4 tunnels, a 6to4 global address of the form 2002:tsrc::1/16 is configured. The tsrc portion is the tun- nel source IPv4 address. The prefix length of the 6to4 interface is automatically set to 16, as all 6to4 packets (destinations in the 2002::/16 range) are forwarded to the 6to4 tunnel interface. For example, for a 6to4 link with a tunnel source of 75.1.2.3, the IPv6 interface would have an address of 2002:4b01:203::1/16. Additional IPv6 addresses can be added using the addif option or by plumbing additional logical interfaces. For backward compatibility, the plumbing of tunnel IP inter- faces with special names will implicitly result in the SunOS 5.11 Last change: 6 Jul 2010 29 System Administration Commands ifconfig(1M) creation of tunnel links without invoking dladm create- iptun. These tunnel names are: ip.tunN An IPv4 tunnel ip6.tunN An IPv6 tunnel ip.6to4tunN A 6to4 tunnel These tunnels are "implicit tunnels", denoted with the i flag in dladm show-iptun output. The tunnel links over which these special IP interfaces are plumbed are automatically created, and they are automatically deleted when the last reference is released (that is, when the last IP interface is unplumbed). The tsrc, tdst, encaplim, and hoplimit options to ifconfig are obsolete and maintained only for backward compatibility. They are equivalent to their dladm(1M) counterparts. Display of Tunnel Security Settings The ifconfig output for IP tunnel interfaces indicates whether IPsec policy is configured for the underlying IP tunnel link. For example, a line of the following form will be displayed if IPsec policy is present: tunnel security settings --> use 'ipsecconf -ln -i ip.tun1' If you do net set security policy, using either ifconfig or ipsecconf(1M), there is no tunnel security setting displayed. EXAMPLES Example 1 Using the ifconfig Command If your workstation is not attached to an Ethernet, the net- work interface, for example, eri0, should be marked "down" as follows: example% ifconfig eri0 down SunOS 5.11 Last change: 6 Jul 2010 30 System Administration Commands ifconfig(1M) Example 2 Printing Addressing Information To print out the addressing information for each interface, use the following command: example% ifconfig -a Example 3 Resetting the Broadcast Address To reset each interface's broadcast address after the net- masks have been correctly set, use the next command: example% ifconfig -a broadcast + Example 4 Changing the Ethernet Address To change the Ethernet address for interface ce0, use the following command: example% ifconfig ce0 ether aa:1:2:3:4:5 Example 5 Configuring an IP-in-IP Tunnel To configure an IP-in-IP tunnel, first create an IP tunnel link (tunsrc and tundst are hostnames with corresponding IPv4 entries in /etc/hosts): example% dladm create-iptun -T ipv4 -s tunsrc -d tundst tun0 Then plumb a point-to-point interface, supplying the source and destination addresses (mysrc and thedst are hostnames with corresponding IPv4 entries in /etc/hosts): example% ifconfig tun0 plumb mysrc thedst up SunOS 5.11 Last change: 6 Jul 2010 31 System Administration Commands ifconfig(1M) Use ipsecconf(1M), as described above, to configure tunnel security properties. Configuring IPv6 tunnels is done by using a tunnel type of ipv6 with create-iptun. IPv6 interfaces can also be plumbed over either type of tunnel. Example 6 Configuring 6to4 Tunnels To configure 6to4 tunnels, first create a 6to4 tunnel link (myv4addr is a hostname with a corresponding IPv4 entry in /etc/hosts): example% dladm create-iptun -T 6to4 -s myv4addr my6to4tun0 Then an IPv6 interface is plumbed over this link: example% ifconfig my6to4tun0 inet6 plumb up The IPv6 address of the interface is automatically set as described above. Example 7 Configuring IP Forwarding on an Interface To enable IP forwarding on a single interface, use the fol- lowing command: example% ifconfig eri0 router To disable IP forwarding on a single interface, use the fol- lowing command: example% ifconfig eri0 -router SunOS 5.11 Last change: 6 Jul 2010 32 System Administration Commands ifconfig(1M) Example 8 Configuring Source Address Selection Using a Vir- tual Interface The following command configures source address selection such that every packet that is locally generated with no bound source address and going out on qfe2 prefers a source address hosted on vni0. example% ifconfig qfe2 usesrc vni0 The ifconfig -a output for the qfe2 and vni0 interfaces displays as follows: qfe2: flags=1100843<UP,BROADCAST,RUNNING,MULTICAST,ROUTER,IPv4> mtu 1500 index 4 usesrc vni0 inet 1.2.3.4 netmask ffffff00 broadcast 1.2.3.255 ether 0:3:ba:17:4b:e1 vni0: flags=20011100c1<UP,RUNNING,NOARP,NOXMIT,ROUTER,IPv4,VIRTUAL> mtu 0 index 5 srcof qfe2 inet 3.4.5.6 netmask ffffffff Observe, above, the usesrc and srcof keywords in the ifcon- fig output. These keywords also appear on the logical instances of the physical interface, even though this is a per-physical interface parameter. There is no srcof keyword in ifconfig for configuring interfaces. This information is determined automatically from the set of interfaces that have usesrc set on them. The following command, using the none keyword, undoes the effect of the preceding ifconfig usesrc command. example% ifconfig qfe2 usesrc none Following this command, ifconfig -a output displays as fol- lows: SunOS 5.11 Last change: 6 Jul 2010 33 System Administration Commands ifconfig(1M) qfe2: flags=1100843<UP,BROADCAST,RUNNING,MULTICAST,ROUTER,IPv4> mtu 1500 index 4 inet 1.2.3.4 netmask ffffff00 broadcast 1.2.3.255 ether 0:3:ba:17:4b:e1 vni0: flags=20011100c1<UP,RUNNING,NOARP,NOXMIT,ROUTER,IPv4,VIRTUAL> mtu 0 index 5 inet 3.4.5.6 netmask ffffffff Note the absence of the usesrc and srcof keywords in the output above. Example 9 Configuring Source Address Selection for an IPv6 Address The following command configures source address selection for an IPv6 address, selecting a source address hosted on vni0. example% ifconfig qfe1 inet6 usesrc vni0 Following this command, ifconfig -a output displays as fol- lows: qfe1: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 3 usesrc vni0 inet6 fe80::203:baff:fe17:4be0/10 ether 0:3:ba:17:4b:e0 vni0: flags=2002210041<UP,RUNNING,NOXMIT,NONUD,IPv6,VIRTUAL> mtu 0 index 5 srcof qfe1 inet6 fe80::203:baff:fe17:4444/128 vni0:1: flags=2002210040<RUNNING,NOXMIT,NONUD,IPv6,VIRTUAL> mtu 0 index 5 srcof qfe1 inet6 fec0::203:baff:fe17:4444/128 vni0:2: flags=2002210040<RUNNING,NOXMIT,NONUD,IPv6,VIRTUAL> mtu 0 index 5 srcof qfe1 inet6 2000::203:baff:fe17:4444/128 SunOS 5.11 Last change: 6 Jul 2010 34 System Administration Commands ifconfig(1M) Depending on the scope of the destination of the packet going out on qfe1, the appropriately scoped source address is selected from vni0 and its aliases. Example 10 Using Source Address Selection with Shared-IP Zones The following is an example of how the usesrc feature can be used with the zones(5) facility in Solaris. The following commands are invoked in the global zone: example% ifconfig hme0 usesrc vni0 example% ifconfig eri0 usesrc vni0 example% ifconfig qfe0 usesrc vni0 Following the preceding commands, the ifconfig -a output for the virtual interfaces would display as: vni0: flags=20011100c1<UP,RUNNING,NOARP,NOXMIT,ROUTER,IPv4,VIRTUAL> mtu 0 index 23 srcof hme0 eri0 qfe0 inet 10.0.0.1 netmask ffffffff vni0:1: flags=20011100c1<UP,RUNNING,NOARP,NOXMIT,ROUTER,IPv4,VIRTUAL> mtu 0 index 23 zone test1 srcof hme0 eri0 qfe0 inet 10.0.0.2 netmask ffffffff vni0:2: flags=20011100c1<UP,RUNNING,NOARP,NOXMIT,ROUTER,IPv4,VIRTUAL> mtu 0 index 23 zone test2 srcof hme0 eri0 qfe0 inet 10.0.0.3 netmask ffffffff vni0:3: flags=20011100c1<UP,RUNNING,NOARP,NOXMIT,ROUTER,IPv4,VIRTUAL> mtu 0 index 23 zone test3 srcof hme0 eri0 qfe0 inet 10.0.0.4 netmask ffffffff There is one virtual interface alias per zone (test1, test2, and test3). A source address from the virtual interface SunOS 5.11 Last change: 6 Jul 2010 35 System Administration Commands ifconfig(1M) alias in the same zone is selected. The virtual interface aliases were created using zonecfg(1M) as follows: example% zonecfg -z test1 zonecfg:test1> add net zonecfg:test1:net> set physical=vni0 zonecfg:test1:net> set address=10.0.0.2 The test2 and test3 zone interfaces and addresses are created in the same way. Example 11 Turning Off DHCPv6 The following example shows how to disable automatic use of DHCPv6 on all interfaces, and immediately shut down DHCPv6 on the interface named hme0. See in.ndpd(1M) and ndpd.conf(4) for more information on the automatic DHCPv6 configuration mechanism. example% echo ifdefault StatefulAddrConf false >> /etc/inet/ndpd.conf example% pkill -HUP -x in.ndpd example% ifconfig hme0 dhcp release FILES /etc/netmasks Netmask data. /etc/default/inet_type Default Internet protocol type. ATTRIBUTES See attributes(5) for descriptions of the following attri- butes: SunOS 5.11 Last change: 6 Jul 2010 36 System Administration Commands ifconfig(1M) _______________________________________________________________________ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | |_______________________________________|______________________________| | Availability | SUNWcs | |_______________________________________|______________________________| | Interface Stability for command-line| Committed | | options | | |_______________________________________|______________________________| | Interface Stability for command output| Uncommitted | |_______________________________________|______________________________| SEE ALSO dhcpinfo(1), cfgadm(1M), dhcpagent(1M), dladm(1M), if_mpadm(1M), in.mpathd(1M), in.ndpd(1M), in.routed(1M), ipmpstat(1M), ipsecconf(1M), ndd(1M), netstat(1M), zoneadm(1M), zonecfg(1M), ethers(3SOCKET), gethostbyname(3NSL), getnetbyname(3SOCKET), hosts(4), inet_type(4), ndpd.conf(4), netmasks(4), networks(4), nsswitch.conf(4), attributes(5), privileges(5), zones(5), arp(7P), ipsecah(7P), ipsecesp(7P) System Administration Guide: IP Services DIAGNOSTICS ifconfig sends messages that indicate if: o the specified interface does not exist o the requested address is unknown o the user is not privileged and tried to alter an interface's configuration NOTES Do not select the names broadcast, down, private, trailers, up or other possible option names when you choose host names. If you choose any one of these names as host names, it can cause unusual problems that are extremely difficult to diagnose.
La commande which est une commande assez classique des systèmes Unix. Elle permet de retrouver l’emplacement d’un exécutable. Elle ne sert donc que dans des cas spécifique mais il est important de connaître cette commande.
root@solaris:~# which prtdiag /usr/sbin/prtdiag axel@solaris:~$ which df /usr/gnu/bin/df
User Commands WHICH(1) NAME which - shows the full path of (shell) commands. SYNOPSIS which [options] [--] programname [...] DESCRIPTION Which takes one or more arguments. For each of its arguments it prints to stdout the full path of the executables that would have been executed when this argument had been entered at the shell prompt. It does this by searching for an exe- cutable or script in the directories listed in the environ- ment variable PATH using the same algorithm as bash(1). This man page is generated from the file which.texinfo. OPTIONS --all, -a Print all matching executables in PATH, not just the first. --read-alias, -i Read aliases from stdin, reporting matching ones on stdout. This is useful in combination with using an alias for which itself. For example alias which='alias | which -i'. --skip-alias Ignore option `--read-alias', if any. This is useful to explicity search for normal binaries, while using the `--read-alias' option in an alias or function for which. --read-functions Read shell function definitions from stdin, reporting matching ones on stdout. This is useful in combination with using a shell function for which itself. For exam- ple: which() { declare -f | which --read-functions $@ } export -f which --skip-functions Ignore option `--read-functions', if any. This is useful to explicity search for normal binaries, while using the `--read-functions' option in an alias or function for which. --skip-dot Skip directories in PATH that start with a dot. --skip-tilde Skip directories in PATH that start with a tilde and executables which reside in the HOME directory. SunOS 5.10 Last change: 1 User Commands WHICH(1) --show-dot If a directory in PATH starts with a dot and a matching executable was found for that path, then print "./pro- gramname" rather than the full path. --show-tilde Output a tilde when a directory matches the HOME direc- tory. This option is ignored when which is invoked as root. --tty-only Stop processing options on the right if not on tty. --version,-v,-V Print version information on standard output then exit successfully. --help Print usage information on standard output then exit successfully. RETURN VALUE Which returns the number of failed arguments, or -1 when no `programname' was given. EXAMPLE The recommended way to use this utility is by adding an alias (C shell) or shell function (Bourne shell) for which like the following: [ba]sh: which () { (alias; declare -f) | /usr/bin/which --tty-only --read-alias --read-functions --show-tilde --show-dot $@ } export -f which [t]csh: alias which 'alias | /usr/bin/which --tty-only --read-alias --show-dot --show-tilde' This will print the readable ~/ and ./ when starting which from your prompt, while still printing the full path when used from a script: > which q2 ~/bin/q2 > echo `which q2` /home/carlo/bin/q2 SunOS 5.10 Last change: 2 User Commands WHICH(1) BUGS The HOME directory is determined by looking for the HOME environment variable, which aborts when this variable doesn't exist. Which will consider two equivalent direc- tories to be different when one of them contains a path with a symbolic link. AUTHOR Carlo Wood <carlo@gnu.org> SEE ALSO bash(1) ATTRIBUTES See attributes(5) for descriptions of the following attri- butes: _______________________________________ | ATTRIBUTE TYPE | ATTRIBUTE VALUE| |____________________|_________________| | Availability | shell/which | |____________________|_________________| | Interface Stability| Uncommitted | |____________________|_________________| NOTES Source for GNU which is available on http://opensolaris.org. SunOS 5.10 Last change: 3
Uname est une commande assez classique sur les systèmes Unix car elle permet d’obtenir facilement des informations sur le système d’exploitation. On utilise souvent uname -n pour récupérer le nom du serveur. Cette commande est également souvent utilisé dans les scripts pour pouvoir adapter automatique un même script sur plusieurs serveurs.
root@solaris:~# uname SunOS axel@solaris:~$ uname -n solaris axel@solaris:~$ uname -an SunOS solaris 5.11 snv_151a i86pc i386 i86pc Solaris
User Commands UNAME(1) NAME uname - print system information SYNOPSIS uname [OPTION]... DESCRIPTION Print certain system information. With no OPTION, same as -s. -a, --all print all information, in the following order, except omit -p and -i if unknown: -s, --kernel-name print the kernel name -n, --nodename print the network node hostname -r, --kernel-release print the kernel release -v, --kernel-version print the kernel version -m, --machine print the machine hardware name -p, --processor print the processor type or "unknown" -i, --hardware-platform print the hardware platform or "unknown" -o, --operating-system print the operating system --help display this help and exit --version output version information and exit AUTHOR Written by David MacKenzie. REPORTING BUGS Report uname bugs to bug-coreutils@gnu.org GNU coreutils home page: <http://www.gnu.org/software/coreutils/> General help using GNU software: GNU coreutils 8.5 Last change: April 2010 1 User Commands UNAME(1) <http://www.gnu.org/gethelp/> Report uname translation bugs to <http://translationproject.org/team/> COPYRIGHT Copyright O 2010 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistri- bute it. There is NO WARRANTY, to the extent permitted by law. SEE ALSO arch(1), uname(2) The full documentation for uname is maintained as a Texinfo manual. If the info and uname programs are properly installed at your site, the command info coreutils uname invocation should give you access to the complete manual. ATTRIBUTES See attributes(5) for descriptions of the following attri- butes: ___________________________________________ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | |____________________|_____________________| | Availability | file/gnu-coreutils | |____________________|_____________________| | Interface Stability| Uncommitted | |____________________|_____________________| NOTES Source for GNU coreutils is available on http://opensolaris.org. GNU coreutils 8.5 Last change: April 2010 2
df est une commande assez pratique car elle permet d’avoir rapidement des informations sur l’usage des disques durs et des points de montage du système. Avec l’option -h on obtiens les informations sous une forme plus appréciable (MB, GB, etc..). Il s’agit d’une commande assez répandu sur les sytèmes Unix.
Quelques options sont également intéressantes comme –total qui rajoute une ligne avec un total de l’ensemble des disques. On peut également donner en paramètre à df un point de montage ou un dossier et il retournera l’information sur l’usage disque spécifique au chemin donné en paramètre, cela a le double avantage de connaître l’usage mais aussi de savoir quel point de montage est utilisé sur ce dossier.
df s’utilise généralement avec la commande mount.
root@solaris:~# df Filesystem 1K-blocks Used Available Use% Mounted on rpool/ROOT/solaris 7234607 2173132 5061475 31% / swap 858260 368 857892 1% /etc/svc/volatile /usr/lib/libc/libc_hwcap1.so.1 7234607 2173132 5061475 31% /lib/libc.so.1 swap 857896 4 857892 1% /tmp swap 857936 44 857892 1% /var/run rpool/export 5061507 32 5061475 1% /export rpool/export/home 5061507 32 5061475 1% /export/home rpool/export/home/axel 5061509 34 5061475 1% /export/home/axel rpool 5061568 93 5061475 1% /rpool /export/home/axel 5061509 34 5061475 1% /home/axel root@solaris:~# df -h Filesystem Size Used Avail Use% Mounted on rpool/ROOT/solaris 6,9G 2,1G 4,9G 31% / swap 839M 368K 838M 1% /etc/svc/volatile /usr/lib/libc/libc_hwcap1.so.1 6,9G 2,1G 4,9G 31% /lib/libc.so.1 swap 838M 4,0K 838M 1% /tmp swap 838M 44K 838M 1% /var/run rpool/export 4,9G 32K 4,9G 1% /export rpool/export/home 4,9G 32K 4,9G 1% /export/home rpool/export/home/axel 4,9G 34K 4,9G 1% /export/home/axel rpool 4,9G 93K 4,9G 1% /rpool /export/home/axel 4,9G 34K 4,9G 1% /home/axel
NAME df - report file system disk space usage SYNOPSIS df [OPTION]... [FILE]... DESCRIPTION This manual page documents the GNU version of df. df displays the amount of disk space available on the file sys- tem containing each file name argument. If no file name is given, the space available on all currently mounted file systems is shown. Disk space is shown in 1K blocks by default, unless the environment variable POSIXLY_CORRECT is set, in which case 512-byte blocks are used. If an argument is the absolute file name of a disk device node containing a mounted file system, df shows the space available on that file system rather than on the file system containing the device node (which is always the root file system). This version of df cannot show the space available on unmounted file systems, because on most kinds of systems doing so requires very nonportable intimate knowledge of file system structures. OPTIONS Show information about the file system on which each FILE resides, or all file systems by default. Mandatory arguments to long options are mandatory for short options too. -a, --all include dummy file systems -B, --block-size=SIZE use SIZE-byte blocks --total produce a grand total -h, --human-readable print sizes in human readable format (e.g., 1K 234M 2G) -H, --si likewise, but use powers of 1000 not 1024 -i, --inodes list inode information instead of block usage -k like --block-size=1K -l, --local limit listing to local file systems --no-sync do not invoke sync before getting usage info (default) -P, --portability use the POSIX output format --sync invoke sync before getting usage info -t, --type=TYPE limit listing to file systems of type TYPE -T, --print-type print file system type -x, --exclude-type=TYPE limit listing to file systems not of type TYPE -v (ignored) --help display this help and exit --version output version information and exit Display values are in units of the first available SIZE from --block-size, and the DF_BLOCK_SIZE, BLOCK_SIZE and BLOCK- SIZE environment variables. Otherwise, units default to 1024 bytes (or 512 if POSIXLY_CORRECT is set). SIZE may be (or may be an integer optionally followed by) one of following: KB 1000, K 1024, MB 1000*1000, M 1024*1024, and so on for G, T, P, E, Z, Y. AUTHOR Written by Torbjorn Granlund, David MacKenzie, and Paul Eggert. REPORTING BUGS Report df bugs to bug-coreutils@gnu.org GNU coreutils home page: <http://www.gnu.org/software/coreutils/> General help using GNU software: <http://www.gnu.org/gethelp/> Report df translation bugs to <http://translationproject.org/team/> COPYRIGHT Copyright O 2010 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistri- bute it. There is NO WARRANTY, to the extent permitted by law. SEE ALSO The full documentation for df is maintained as a Texinfo manual. If the info and df programs are properly installed at your site, the command info coreutils df invocation should give you access to the complete manual. ATTRIBUTES See attributes(5) for descriptions of the following attri- butes: ___________________________________________ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | |____________________|_____________________| | Availability | file/gnu-coreutils | |____________________|_____________________| | Interface Stability| Uncommitted | |____________________|_____________________| NOTES Source for GNU coreutils is available on http://opensolaris.org.
prtdiag est une commande permettant d’obtenir des informations sur le hardware. On obtiens avec cette commande des informations sur les processeurs, la ram, les équipements rattachés, etc..
root@solaris:~# prtdiag System Configuration: Dell Inc. Precision WorkStation 370 BIOS Configuration: Dell Inc. A02 08/23/2004 ==== Processor Sockets ==================================== Version Location Tag -------------------------------- -------------------------- Pentium 4 Microprocessor ==== Memory Device Sockets ================================ Type Status Set Device Locator Bank Locator ----------- ------ --- ------------------- ---------------- SDRAM in use 0 CHANNEL A DIMM 0 SDRAM in use 0 CHANNEL B DIMM 0 SDRAM in use 0 CHANNEL A DIMM 1 SDRAM in use 0 CHANNEL B DIMM 1 ==== On-Board Devices ===================================== Broadcom 5751 NetXtreme Gigabit Controller AC'97 Audio Controller ==== Upgradeable Slots ==================================== ID Status Type Description --- --------- ---------------- ---------------------------- 1 available PCI PCI_1 2 available PCI PCI_2 3 available PCI PCI_3 4 in use PCI Express PCI_E_1 0 in use PCI Express PEG
System Administration Commands prtdiag(1M) NAME prtdiag - display system diagnostic information SYNOPSIS /usr/sbin/prtdiag [-v] [-l] DESCRIPTION prtdiag displays system configuration and diagnostic infor- mation on sun4u, sun4v, and x86 systems. The diagnostic information lists any failed field replace- able units (FRUs) in the system. The interface, output, and location in the directory hierar- chy for prtdiag are uncommitted and subject to change in future releases. prtdiag does not display diagnostic information and environ- mental status when executed on the Sun Enterprise 10000 server. See the /var/opt/SUNWssp/adm/${SUNW_HOSTNAME}/messages file on the system service processor (SSP) to obtain such information for this server. OPTIONS The following options are supported: -l Log output. If failures or errors exist in the system, output this information to syslogd(1M) only. -v Verbose mode. Displays the time of the most recent AC Power failure, and the most recent hardware fatal error information, and (if applicable) environmental status. The hardware fatal error information is useful to repair and manufacturing for detailed diagnostics of FRUs. EXIT STATUS The following exit values are returned: 0 No failures or errors are detected in the system. 1 Failures or errors are detected in the system. 2 An internal prtdiag error occurred, for example, out of memory. ATTRIBUTES See attributes(5) for descriptions of the following attri- butes: ____________________________________________________________ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | |_____________________________|_____________________________| | Availability | system/library/platform | |_____________________________|_____________________________| | Interface Stability | Uncommitted* | |_____________________________|_____________________________| *The output is unstable. SEE ALSO modinfo(1M), prtconf(1M), psrinfo(1M), sysdef(1M), syslogd(1M), attributes(5), openprom(7D) NOTES Not all diagnostic and system information is available on every Solaris platform, and therefore cannot be displayed by prtdiag. On those platforms, further information can be obtained from the System Controller. SunOS 5.11 Last change: 2 Sep 2008 2